selection_functions
- class selfisys.selection_functions.LognormalSelection(L=None, selection_params=None, survey_mask_path=None, local_select_path=None, size=None)[source]
Bases:
object
Class to generate radial selection functions.
- init_selection(reset=False)[source]
Initialise the radial selection functions.
- Parameters:
reset (bool, optional) – Whether to reset the selection function.
- lognormals_z_to_x(xx, mask, params, spline)[source]
Convert log-normal distributions from redshift to distance.
- Parameters:
xx (array-like) – Comoving distances at which to evaluate the distributions.
mask (ndarray or None) – Survey mask C(n).
params (tuple of arrays) – Parameters for the distributions (ss, mm, rr).
spline (UnivariateSpline) – Linear interpolator for the distance-redshift relation.
- Returns:
Tuple containing redshifts and list of distributions.
- Return type:
tuple
- multiple_lognormal(x, mask, ss, ll, rr)[source]
Compute multiple log-normal distributions.
- Parameters:
x (ndarray) – Input array.
mask (ndarray or None) – Survey mask C(n).
ss (array_like) – Standard deviations for each distribution.
ll (array_like) – Means for each distribution.
rr (array_like) – Rescaling factors for each distribution.
- Returns:
List of log-normal distributions.
- Return type:
list of ndarray
- multiple_lognormal_z(x, mask, ss, mm, rr)[source]
Compute multiple rescaled lognormal distributions as functions of redshift.
- Parameters:
x (ndarray) – Input array (redshifts).
mask (ndarray or None) – Survey mask C(n).
ss (array_like) – Standard deviations of the lognormal distributions.
mm (array_like) – Means of the lognormal distributions.
rr (array_like) – Rescaling factors for each distribution.
- Returns:
List of log-normal distributions.
- Return type:
list of ndarray
- static one_lognormal(x, std, mean, rescale=None)[source]
Rescaled log-normal distribution.
- Parameters:
x (ndarray) – Input array.
std (float) – Standard deviation of the distribution.
mean (float) – Mean of the distribution.
rescale (float, optional) – Rescaling factor. If None, the distribution is normalised such that its maximum value is 1.
- Returns:
Log-normal distribution evaluated at x.
- Return type:
ndarray
- static one_lognormal_z(x, sig2, mu, rescale=None)[source]
Compute a log-normal distribution in redshift.
- Parameters:
x (ndarray) – Input array.
sig2 (float) – Variance of the distribution.
mu (float) – Mean of the distribution.
rescale (float, optional) – Rescaling factor.
- Returns:
Log-normal distribution evaluated at x.
- Return type:
ndarray