normalise_hb
- selfisys.normalise_hb.define_normalisation(hidden_box: HiddenBox, Pbins: ndarray, cosmo: Dict[str, Any], N: int, min_k_norma: float = 0.04, npar: int = 1, force: bool = False) ndarray [source]
Define the normalisation constants for the HiddenBox instance.
- Parameters:
hidden_box (HiddenBox) – Instance of the HiddenBox class.
Pbins (ndarray) – Array of P bin values.
cosmo (dict) – Cosmological and infrastructure parameters.
N (int) – Number of realisations required.
min_k_norma (float, optional) – Minimum k value to compute the normalisation constants.
npar (int, optional) – Number of parallel processes to use. Default is 1.
force (bool, optional) – If True, force recomputation. Default is False.
- Returns:
norm_csts – Normalisation constants for the HiddenBox instance.
- Return type:
ndarray
- selfisys.normalise_hb.worker_normalisation(hidden_box: HiddenBox, params: Tuple[Dict[str, Any], list, list, bool]) ndarray [source]
Worker function to compute the normalisation constants, compatible with Python multiprocessing.
- Parameters:
hidden_box (HiddenBox) – Instance of the HiddenBox class.
params (tuple) – A tuple containing (cosmo, seedphase, seednoise, force).
- Returns:
phi – Computed summary statistics.
- Return type:
ndarray
- selfisys.normalise_hb.worker_normalisation_public(hidden_box, cosmo: Dict[str, Any], N: int, i: int)[source]
Run the i-th simulation required to compute the normalisation constants.
- Parameters:
hidden_box (HiddenBox) – Instance of the HiddenBox class.
cosmo (dict) – Cosmological and some infrastructure parameters.
N (int) – Total number of realisations required.
i (int) – Index of the simulation to be computed.